/rozumie¢ monady

Grzegorz Balcerek

2015-04-29

val sqrt = math.sqrt _
val acos = math.acos _
val divTen = (x:Double) => x/10.0

val sqrt = math.sqrt _
val acos = math.acos _
val divTen = (x:Double) => x/10.0

scala> sqrt(64.0)
resO: Double = 8.0

val sqrt = math.sqrt _
val acos = math.acos _
val divTen = (x:Double) => x/10.0

scala> sqrt(64.0)
resO: Double = 8.0

scala> divTen(8.0)
resl: Double = 0.8

val sqrt = math.sqrt _
val acos = math.acos _
val divTen = (x:Double) => x/10.0

scala> sqrt(64.0)
resO: Double = 8.0

scala> divTen(8.0)
resl: Double = 0.8

scala> acos(0.8)
res2: Double = 0.6435011087932843

def comp[A,B,C](
f: A=>B, g: B=>C): A=>C =
(a) => g(£f(a))

def comp[A,B,C](
f: A=>B, g: B=>C): A=>C =
(a) => g(£f(a))

W

comp(f,g)

comp (f,comp(g,h)) == comp(comp(f,g),h)

comp (f,comp(g,h)) == comp(comp(f,g),h)

comp(f,comp(g,h))

comp(g,h)

comp(f,g)

comp(comp(f,g),h)

def id[A] (a:A) = a

def id[A] (a:A) = a

scala> id(1)
res3: Int =1

comp(id,f) == f

comp(id,f) == f

id

comp(id,f)

comp(f,id) ==

comp(f,id) ==

comp(f,id)

def compSeq[A](fs: (A => A)*): A => A =
fs.foldRight [A=>A] (id) (comp)

def compSeq[A](fs: (A => A)*): A => A =
fs.foldRight [A=>A] (id) (comp)

val £ = compSeq(sqrt,divTen,acos)

def compSeq[A](fs: (A => A)*): A => A =
fs.foldRight [A=>A] (id) (comp)

val £ = compSeq(sqrt,divTen,acos)

scala> f(64.0)
res4: Double = 0.6435011087932843

scala> sqrt(-1.0)
res5: Double = NaN

scala> sqrt(-1.0)
res5: Double = NaN

scala> acos(10.0)
res6: Double = NaN

scala> sqrt(-1.0)
res5: Double = NaN

scala> acos(10.0)
res6: Double = NaN

scala> £(200.0)
res7: Double = NaN

val sqrt0 = (x:Double) =>
if (x >= 0.0) Some(sqrt(x)) else None

val sqrt0 = (x:Double) =>
if (x >= 0.0) Some(sqrt(x)) else None

val divTen0 = (x:Double) =>
Option(divTen(x))

val sqrt0 = (x:Double) =>
if (x >= 0.0) Some(sqrt(x)) else None

val divTen0 = (x:Double) =>
Option(divTen(x))

val acos0 = (x:Double) =>
if (x >= -1.0 && x <= 1.0)
Some (acos(x)) else None

scala> sqrt0(64.0)
res8: Option[Double] = Some(8.0)

scala> sqrt0(64.0)

res8: Option[Double] = Some(8.0)
scala> divTen0(8.0)
res9: Option[Double] = Some(0.8)

scala> sqrt0(64.0)

res8: Option[Double] = Some(8.0)
scala> divTen0(8.0)
res9: Option[Double] = Some(0.8)

scala> acos0(0.8)
res10: Option[Double] = Some(0.64350110879
32843)

scala> sqrt0(64.0)

res8: Option[Double] = Some(8.0)
scala> divTen0(8.0)
res9: Option[Double] = Some(0.8)

scala> acos0(0.8)
res10: Option[Double]
32843)

Some (0.64350110879

scala> sqrt0(-1.0)
resll: Option[Double]

None

scala> sqrt0(64.0)

res8: Option[Double] = Some(8.0)
scala> divTen0(8.0)
res9: Option[Double] = Some(0.8)

scala> acos0(0.8)
res10: Option[Double]

Some (0.64350110879

32843)

scala> sqrt0(-1.0)

resll: Option[Double] = None
scala> acos0(10.0)

res12: Option[Double] = None

ion[C
Option[B] Option[C]

ion[C
Option[B] Option[C]

compO(f,g)

ion[C
Option[B] Option[C]

compO(f,g)

def compO[A,B,C](
f: A => Option[B],
g: B => Option[C]): A => Option[C] =
(a) => f(a) match {
case None => None
case Some(b) => g(b)
}

def idO[A](a: A): Option[A] = Some(a)

def idO[A](a: A): Option[A] = Some(a)

scala> id0(1)
res13: Option[Int] = Some(1)

def compOSeql[A](
fs: (A => Option[Al)*): A => Option[A] =
fs.foldRight[A => Option[A]] (id0) (comp0)

def compOSeql[A](
fs: (A => Option[Al)*): A => Option[A] =
fs.foldRight[A => Option[A]] (id0) (comp0)

val f0 = compOSeq(sqrt0,divTen0,acos0)

def compOSeql[A](
fs: (A => Option[Al)*): A => Option[A] =
fs.foldRight[A => Option[A]] (id0) (comp0)

val f0 = compOSeq(sqrt0,divTen0,acos0)

scala> f0(64.0)
resl4: Option[Double] = Some(0.64350110879
32843)

def compOSeql[A](
fs: (A => Option[Al)*): A => Option[A] =
fs.foldRight[A => Option[A]] (id0) (comp0)

val f0 = compOSeq(sqrt0,divTen0,acos0)

scala> f0(64.0)
resl4: Option[Double]
32843)

Some (0.64350110879

scala> £0(200.0)

res15: Option[Double] None

val sqrtL = (x:Double) =>
if (x >= 0.0)
List(sqrt(x),-sqrt(x)) else Nil

val sqrtL = (x:Double) =>
if (x >= 0.0)
List(sqrt(x),-sqrt(x)) else Nil

val divTenL = (x:Double) =>
List (divTen(x))

val sqrtL = (x:Double) =>
if (x >= 0.0)
List(sqrt(x),-sqrt(x)) else Nil

val divTenL = (x:Double) =>
List (divTen(x))

val acosL = (x:Double) =>
if (x >= -1.0 && x <= 1.0)
List(acos(x)) else Nil

scala> sqrtL(64.0)
resl16: List[Double] = List(8.0, -8.0)

scala> sqrtL(64.0)

resl16: List[Double] List(8.0, -8.0)

scala> acosL(0.8)
resl7: List[Doublel]
843)

List(0.6435011087932

scala> sqrtL(64.0)
res16: List[Double]

List (8.0, -8.0)

scala> acosL(0.8)
resl7: List[Doublel]
843)

List(0.6435011087932

scala> acosL(-0.8)
resl18: List[Doublel]
09)

List (2.4980915447965

scala> sqrtL(64.0)
res16: List[Double]

List (8.0, -8.0)

scala> acosL(0.8)
resl7: List[Doublel]
843)

List(0.6435011087932

scala> acosL(-0.8)
resl18: List[Doublel]
09)

List (2.4980915447965

scala> sqrtL(-1.0)

res19: List[Double] List()

scala>
resl6:

scala>
resl7:
843)

scala>
resi8:
09)

scala>
resl19:

scala>
res20:

sqrtL(64.0)
List [Doublel]

acosL(0.8)
List [Double]

acosL(-0.8)
List [Double]

sqrtL(-1.0)
List [Double]

acosL(10.0)
List [Doublel

List (8.0, -8.0)

List(0.6435011087932

List (2.4980915447965

List ()

List ()

s

ist[C]
List[B] List[

compL(f,g)

ist[C]
List[B] List[

compL(f,g)

def compL[A,B,C](
f: A => List[B],
g: B => List[C]): A => List[C] =
(a) => {
val bs = f(a)
var ¢ = List[C] ()
bs.foreach(b => ¢ = ¢ ++ g(b))
c

def idL[A]: A => List[A] = List())

def idL[A]: A => List[A] = List())

scala> idL(1)
res21: List[Int] = List(1)

def compLSeql[A] (
fs: (A => List[A])*): A => List[A] =
fs.foldRight[A => List[A]] (idL) (compL)

def compLSeql[A] (
fs: (A => List[A])*): A => List[A] =
fs.foldRight[A => List[A]] (idL) (compL)

val fL = compLSeq(sqrtL,divTenL,acosL)

def compLSeql[A] (
fs: (A => List[A])*): A => List[A] =
fs.foldRight[A => List[A]] (idL) (compL)

val fL = compLSeq(sqrtL,divTenL,acosL)

scala> fL(64.0)
res22: List[Double] = List(0.6435011087932
843, 2.498091544796509)

def compLSeql[A] (
fs: (A => List[A])*): A => List[A] =

fs.
val fL

scala>
res22:
843, 2.

scala>
res23:

foldRight [A => List[A]] (idL) (compL)

= compLSeq(sqrtL,divTenL,acosL)
fL(64.0)
List[Double] = List(0.6435011087932

498091544796509)

f1.(200.0)
List[Double] = List()

def comp0Seq[A] (
fs: (A => Option[A])*): A => Option[A] =
fs.foldRight[A => Option[A]l] (id0) (compO)

def comp0Seq[A] (
fs: (A => Option[A])*): A => Option[A] =
fs.foldRight[A => Option[A]l] (id0) (compO)

def compLSeq[A](
fs: (A => List[A])*): A => List[A] =
fs.foldRight[A => List[A]] (idL) (compL)

def comp0Seq[A] (
fs: (A => Option[A])*): A => Option[A] =
fs.foldRight[A => Option[A]l] (id0) (compO)

def compLSeq[A](
fs: (A => List[A])*): A => List[A] =
fs.foldRight[A => List[A]] (idL) (compL)

def composeSeq[A](
fs: (A => F[A])*): A => F[A] =
fs.foldRight[A => F[A]] (id) (compose)

trait Compose[F[_]1] {

trait Compose[F[_]1] {

def id[A](a: A): F[A]

trait Compose[F[_]1] {
def id[A](a: A): F[A]

def compose[A,B,C](
f: A => F[B], g: B=>F[C]): A => F[C]

trait Compose[F[_]1] {
def id[A](a: A): F[A]

def compose[A,B,C](
f: A => F[B], g: B=>F[C]): A => F[C]

def composeSeq[A] (
fs: (A => F[Al)*): A => F[A] =
fs.foldRight[A => F[A]] (id) (compose)

trait Monad[M[_]1] {
def id[A](a: A): M[A]

def compose[A,B,C](
f: A => M[B], g: B => M[C]): A => M[C]

def composeSeq[A] (
fs: (A => M[A])*): A => M[A] =
fs.foldRight[A => M[A]] (id) (compose)

compose (compose (f,g) ,h)

compose (f , compose(g,h))

compose (compose (f,g) ,h)

compose (f , compose(g,h))

compose(compose(f,g),h)

compose(f,g ‘ompose(g,h)

compose(f,compose(g,h))

compose (id,f) ==

compose (id,f) ==

compose(id,f)

compose (f,id) ==

compose (f,id) ==

compose(f,id)

Monad:
def id[A](a: A): M[A]

def compose[A,B,C](f: A => M[B],
g: B => M[C]): A => M[C]

compose (compose (f,g) ,h)

compose (f, compose(g,h))
compose (id,f) == f

compose (f,id) == f

implicit object optionMonad extends
Monad [Option] {

def id[A](a: A): Option[A] = Some(a)

def compose[A,B,C] (
f: A => Option[B],
g: B => Option[C]): A => Option[C] =
(a) => f(a) match {
case None => None
case Some(b) => g(b)
}

def composeSeq[A,M[_]:Monad] (
fs: (A => M[A])*): A => M[A] =
implicitly[Monad[M]] .composeSeq(fs: _*)

def composeSeq[A,M[_]:Monad] (
fs: (A => M[A])*): A => M[A] =
implicitly[Monad[M]] .composeSeq(fs: _*)

val £20 = composeSeq(sqrt0,divTen0,acos0)

def composeSeq[A,M[_]:Monad] (
fs: (A => M[A])*): A => M[A] =
implicitly[Monad[M]] .composeSeq(fs: _*)

val £20 = composeSeq(sqrt0,divTen0,acos0)

scala> £20(64.0)
res24: Option[Double] = Some(0.64350110879
32843)

def composeSeq[A,M[_]:Monad] (
fs: (A => M[A])*): A => M[A] =
implicitly[Monad[M]] .composeSeq(fs: _*)

val £20 = composeSeq(sqrt0,divTen0,acos0)

scala> £20(64.0)
res24: Option[Double]
32843)

Some (0.64350110879

scala> £20(200.0)

res25: Option[Double] None

implicit object listMonad extends
Monad [List] {

def id[A] (a: A) = List(a)

def compose[A,B,C](f: A => List[B],
g: B => List[C]): A => List[C] =
(a) => {
val bs = f(a)
var ¢ = List[C] ()
bs.foreach(b => ¢ = ¢ ++ g(b))
c

val f2L = composeSeq(sqrtL,divTenL,acosL)

val f2L = composeSeq(sqrtL,divTenL,acosL)

scala> f2L(64.0)
res26: List[Double] = List(0.6435011087932
843, 2.498091544796509)

val f2L = composeSeq(sqrtL,divTenL,acosL)

scala> f2L(64.0)
res26: List[Double] = List(0.6435011087932
843, 2.498091544796509)

scala> f2L(200.0)
res27: List[Double] = List()

Monad (1):

Monad (1):

def id[A](a: A): M[A]

Monad (1):
def id[A](a: A): M[A]

def compose[A,B,C](f: A => M[B],
g: B => M[C]): A => M[C]

Monad (1):
def id[A](a: A): M[A]

def compose[A,B,C](f: A => M[B],
g: B => M[C]): A => M[C]

def flatMap[A,B] (ma: M[A], f: A => M[B]): M[B]

Monad (1):
def id[A](a: A): M[A]

def compose[A,B,C](f: A => M[B],
g: B => M[C]): A => M[C]

def flatMap[A,B] (ma: M[A], f: A => M[B]): M[B]

def join[A] (mma: M[M[A]]): M[A]

Monad (1):
def id[A](a: A): M[A]

def compose[A,B,C](f: A => M[B],
g: B => M[C]): A => M[C]

def flatMap[A,B] (ma: M[A], f: A => M[B]): M[B]
def join[A] (mma: M[M[A]]): M[A]

def ap[A,B] (ma: M[A], mab: M[A => Bl): M[B]

Monad (1):
def id[A](a: A): M[A]

def compose[A,B,C](f: A => M[B],
g: B => M[C]): A => M[C]

def flatMap[A,B] (ma: M[A], f: A => M[B]): M[B]
def join[A] (mma: M[M[A]]): M[A]
def ap[A,B] (ma: M[A], mab: M[A => Bl): M[B]

def map[A,B] (ma: M[A], f: A => B): M[B]

Monad (2):

Monad (2):

def id[A](a: A): M[A]

Monad (2):
def id[A](a: A): M[A]

def flatMap[A,B] (ma: M[A], f: A => M[B]): M[B]

Monad (2):
def id[A](a: A): M[A]
def flatMap[A,B] (ma: M[A], f: A => M[B]): M[B]

def compose[A,B,C](f: A => M[B],
g: B => M[C]): A => MI[C]

def join[A] (mma: M[M[A]]): M[A]
def ap[A,B] (ma: M[A], mab: M[A => Bl): M[B]

def map[A,B] (ma: M[A], f: A => B): M[B]

Monad (3):

Monad (3):

def id[A](a: A): M[A]

Monad (3):
def id[A](a: A): M[A]

def map[A,B] (ma: M[A], f: A => B): M[B]

Monad (3):
def id[A](a: A): M[A]
def map[A,B] (ma: M[A], f: A => B): M[B]

def join[A] (mma: M[M[A]]): M[A]

Monad (3):

def id[A](a: A): M[A]

def map[A,B] (ma: M[A], f: A => B): M[B]

def join[A] (mma: M[M[A]]): M[A]

def flatMap[A,B] (ma: M[A], f: A => M[B]): M[B]

def compose[A,B,C](f: A => M[B],
g: B => M[C]): A => M[C]

def ap[A,B] (ma: M[A], mab: M[A => Bl): M[B]

Functor
((ETS))

Applicative
(point)

Bind
(bind, join)

Kleisli
(compose)

def f£30(a:Double) =
sqrt0(a) .flatMap(b =>
divTenO0(b) .flatMap(c =>
acos0(c)))

def f£30(a:Double) =
sqrt0(a) .flatMap(b =>
divTenO0(b) .flatMap(c =>
acos0(c)))

def f£30(a:Double) =
sqrt0(a) .flatMap(b =>
divTenO(b) .flatMap(c =>
acos0(c) .map(d => d)))

def f£30(a:Double) =
sqrt0(a) .flatMap(b =>
divTenO0(b) .flatMap(c =>
acos0(c)))

def f£30(a:Double) =
sqrt0(a) .flatMap(b =>
divTenO(b) .flatMap(c =>
acos0(c) .map(d => d)))

scala> £30(64.0)
res28: Option[Double] = Some(0.64350110879
32843)

def f30(a:Double) =
sqrt0(a) .flatMap (b =>
divTenO(b) .flatMap (c =>
acos0(c) .map (4 =>
d)))

def f30(a:Double) =
.flatMap (b

sqrt0(a)

divTen0(b) .flatMap (c

acos0(c) .map

d)))

def f40(a:Double)
b <- sqrt0(a)
¢ <- divTenO0(b)
d <- acos0(c)

} yield d

(d

= for {

scala> f£40(64.0)
res29: Option[Double] = Some(0.64350110879
32843)

scala> f£40(64.0)
res29: Option[Double]
32843)

Some (0.64350110879

scala> £40(200.0)
res30: Option[Double]

None

def f4L(a:Double) = for {
b <- sqrtL(a)
¢ <- divTenL(b)
d <- acosL(c)

} yield d

def f4L(a:Double) = for {
b <- sqrtL(a)
¢ <- divTenL(b)
d <- acosL(c)

} yield d

scala> f4L(64.0)

res31: List[Double] = List(0.6435011087932
843, 2.498091544796509

def f4L(a:Double) = for {
b <- sqrtL(a)
¢ <- divTenL(b)
d <- acosL(c)

} yield d

scala> f4L(64.0)
res31: List[Double] = List(0.6435011087932
843, 2.498091544796509

scala> f4L(200.0)
res32: List[Double] = List()

Script:
https://gist.github.com/grzegorzbalcerek/b05cdda143010e0374£5
Exercises:
https://gist.github.com/grzegorzbalcerek/d9aaa2bbf29cecdf£368
Solutions:

https://gist.github.com/grzegorzbalcerek/8944fd2c86a91d429254

import language.higherKinds
trait Monad1l[M[_]] {

def id[A](a: A): M[A]
def compose[A,B,C](f: A => M[B], g: B => M[C]): A => M[C]

def flatMap[A,B] (ma: M[A], f: A => M[B]): M[B] = 7?77

def join[A] (mma: M[M[A]]): M[A] 7?7
def ap[A,B] (ma: M[A], mab: M[A => B]): M[B] = 777

def map[A,B] (ma: M[A], f: A => B): M[B] = 777

import language.higherKinds
trait Monad2[M[_]] {

def id[A](a: A): M[A]

def flatMap[A,B] (ma: M[A], f£: A => M[B]): M[B]

def compose[A,B,C](f: A => M[B], g: B => M[C]): A => M[C] = 777
def join[A] (mma: M[M[A]]): M[A] = 777

def ap[A,B] (ma: M[A], mab: M[A => B]): M[B] = 777

def map[A,B] (ma: M[A], f: A => B): M[B] = 777

import language.higherKinds
trait Monad3[M[_]] {

def id[A](a: A): M[A]

def map[A,B] (ma: M[A], £: A => B): M[B]

def join[A] (mma: M[M[A]]): M[A]

def flatMap[A,B] (ma: M[A], f: A => M[B]): M[B] = 7?77

def compose[A,B,C](f: A => M[B], g: B => M[C]): A => M[C] = 7?7

def ap[A,B](ma: M[A], mab: M[A => B]): M[B] = 7?77

import language.higherKinds
trait Monadl[M[_]] {

def id[A] (a: A): M[A]
def compose[A,B,C](f: A => M[B], g: B => M[C]): A => M[C]

def flatMap[A,B](ma: M[A], f: A => M[B]): M[B] =
compose ((_:Unit) => ma, £)(())

def join[A] (mma: M[M[A]]): M[A] =
flatMap(mma, identity[M[A]])

def ap[A,B] (ma: M[A], mab: M[A => B]): M[B] =
flatMap(ma, (a:A) =>
flatMap(mab, (f:A=>B) =>
id(£(a))))

def map[A,B] (ma: M[A], f: A => B): M[B] =
ap(ma, id(f))

import language.higherKinds
trait Monad2[M[_]] {

def id[A] (a: A): M[A]
def flatMapl[A,B](ma: M[A], f: A => M[B]): M[B]

def compose[A,B,C](f: A => M[B], g: B => M[C]): A => M[C] =
(a:A) => flatMap(f(a),g)

def join[A] (mma: M[M[A]]): M[A] =
flatMap(mma, identity[M[A]])

def ap[A,B] (ma: M[A], mab: M[A => B]): M[B] =
flatMap(ma, (a:A) =>
flatMap(mab, (f:A=>B) =>
id(£(a))))

def map[A,B] (ma: M[A], f: A => B): M[B] =
ap(ma, id(f))

import language.higherKinds
trait Monad3[M[_]] {

def id[A](a: A): M[A]
def map[A,B] (ma: M[A], £: A => B): M[B]
def join[A] (mma: M[M[A]]): M[A]

def flatMap[A,B] (ma: M[A], f£: A => M[B]): M[B] =
join(map(ma,f))

def compose[A,B,C](f: A => M[B], g: B => M[C]): A => M[C] =
(a:A) => flatMap(f(a),g)

def ap[A,B] (ma: M[A], mab: M[A => B]): M[B] =
flatMap(ma, (a:A) =>
flatMap(mab, (f:A=>B) =>
id(£(a))))

