Typeclasses in Scala

Grzegorz Balcerek

Scalania, 4 lutego 2015



collapse

scala> collapse(List("Hello"," ","World"))
resO: String = Hello World




collapse

scala> collapse(List("Hello"," ","World"))
resO: String = Hello World

scala> collapse(List(1,2,3,4))
resl: Int = 24




collapse

scala> collapse(List("Hello"," ","World"))
resO: String = Hello World

scala> collapse(List(1,2,3,4))
resl: Int = 24

val tree: Treel[Int] =
Node (Node(Leaf,2,Leaf) ,4,Leaf)

scala> collapse(tree)
res2: Int = 8




collapse

collapse

def collapse(list: List[Stringl): String
def collapse(list: List[Int]): Int
def collapse(tree: Tree[Int]): Int




collapse

collapse

def collapse(list: List[Stringl): String
def collapse(list: List[Int]): Int
def collapse(tree: Tree[Int]): Int

Tree
trait Tree[+A]
case object Leaf extends Tree[Nothing]
case class Node[T] (
left: TreelT],
elem: T,
right: Tree[T]) extends Treel[T]




collapse

def collapse(coll: C[T]): T J




Abstractions



Abstractions

compare: (T,T) => Ordering '




Abstractions

compare: (T,T) => Ordering \

trait Ordering

case object LT extends Ordering
case object EQ extends Ordering
case object GT extends Ordering




Abstractions

compare: (T,T) => Ordering

trait Ordering

case object LT extends Ordering
case object EQ extends Ordering
case object GT extends Ordering

compare(a,b) = compare(b,c) = x => compare(a,c) = x




Abstractions

Int )




Abstractions

Int )

String ]




Abstractions

Int J

String |

Int => Int J




Abstractions

sort: (List[T]) => List[T] ]




trait Comparator[T] {
def compare(a:T, b:T): Ordering
}




trait Comparator[T] {

def compare(a:T, b:T): Ordering
}

object IntComp extends Comparator[Int] {
def compare(a:Int, b:Int) = ...




trait Comparator[T] {
def compare(a:T, b:T): Ordering
}

object IntComp extends Comparator[Int] {
def compare(a:Int, b:Int) = ...

def sort[T] (1st:List[T],
c:Comparator [T]): List[T] = ...




trait Comparator[T] {
def compare(a:T, b:T): Ordering
}

object IntComp extends Comparator[Int] {
def compare(a:Int, b:Int) = ...

def sort[T] (1st:List[T],
c:Comparator [T]): List[T] = ...

scala> sort(List(2,7,4,5,4,1), IntComp)
resO: List[Int] = List(1, 2, 4, 4, 5, 7)




Comparable

trait Comparable[T] {
def compare(a:T): Ordering

}




Comparable

trait Comparable[T] {
def compare(a:T): Ordering

}

case class ComparableRational(p:Int,q:Int = 1)
extends Comparable[ComparableRational] {
def compare(x:ComparableRational): Ordering = ...




Comparable

trait Comparable[T] {
def compare(a:T): Ordering

}

case class ComparableRational(p:Int,q:Int = 1)
extends Comparable[ComparableRational] {
def compare(x:ComparableRational): Ordering = ...

def sort[T <: Comparable[T]] (1st:List[T]): List[T] = J




Comparable

trait Comparable[T] {
def compare(a:T): Ordering

}

case class ComparableRational(p:Int,q:Int = 1)
extends Comparable[ComparableRational] {
def compare(x:ComparableRational): Ordering = ...

def sort[T <: Comparable[T]] (1st:List[T]): List[T]

I
N

scala> sort(List(ComparableRational(3,2),

| ComparableRational(1l,4), ComparableRational(1l)))
resO: List[ComparableRational] = List(ComparableRational(1,4),
ComparableRational(1,1), ComparableRational(3,2))




Typeclasses

trait Comparator[T] {
def compare(a:T, b:T): Ordering
}




Typeclasses

implicit object IntComparator
extends Comparator [Int] {
def compare(a:Int, b:Int) =
if (a < b) LT
else if (a > b) GT
else EQ




Typeclasses

case class Rational(p:Int,q:Int = 1) ]

implicit object RationalComparator
extends Comparator[Rational] {
def compare(a:Rational,b:Rational): Ordering = {
val rl = a.p.toDouble/a.q.toDouble
val r2 = b.p.toDouble/b.q.toDouble
if (r1 < r2) LT else if (rl > r2) GT else EQ




Typeclasses

def sort[T] (1st:List[T])
(implicit c: Comparator[T]): List[T] =
1st match {
case Nil => Nil
case h::_ =>

sort(1st.filter(c.compare(h,_) == GT)) ++
lst.filter(c.compare(h,_) == EQ) ++
sort(1st.filter(c.compare(h,_) == LT))




Typeclasses

scala> sort(List(2,7,4,5,4,1))
resO: List[Int] = List(1, 2, 4, 4, 5, 7)

scala> sort(List(Rational(3,2),

| Rational(1,4), Rational(1l)))
resl: List[Rational] = List(Rational(1,4),
Rational(1,1), Rational(3,2))




Context Bound

Implicit parameters list

def sort[T](1st:List[T])
(implicit c: Comparator[T]) =




Context Bound

Implicit parameters list

def sort[T](1st:List[T])
(implicit c: Comparator[T]) =

Context Bound

def sort[T:Comparator] (1st:List[T]) =
{
val ¢ = implicitly[Comparator[T]]




Multiple instances

implicit object StringComparator
extends Comparator[String] {
def compare(a:String, b:String) =
if (a < b) LT
else if (a > b) GT
else EQ




Multiple instances

implicit object StringComparator
extends Comparator[String] {
def compare(a:String, b:String) =
if (a < b) LT
else if (a > b) GT
else EQ
}

scala> sort(List("b","Z","A","x"))
res2: List[String] = List(A, Z, b, x)




Multiple instances

case class IgnoreCase(str: String) extends AnyVal J




Multiple instances

case class IgnoreCase(str: String) extends AnyVal J

implicit object IgnoreCaseStringComparator
extends Comparator [IgnoreCase] {
def compare(a:IgnoreCase, b:IgnoreCase) =
if (a.str.toLowerCase < b.str.toLowerCase) LT

else if (a.str.tolLowerCase > b.str.toLowerCase) GT
else EQ




Multiple instances

case class IgnoreCase(str: String) extends AnyVal J

implicit object IgnoreCaseStringComparator
extends Comparator [IgnoreCase] {
def compare(a:IgnoreCase, b:IgnoreCase) =
if (a.str.toLowerCase < b.str.toLowerCase) LT
else if (a.str.tolowerCase > b.str.toLowerCase) GT
else EQ

scala> sort(List("b","Z","A","x") map
| IgnoreCase.apply) .map(_.str)
res3: List[String] = List(A, b, x, Z)




Multiple instances

trait NoCase )




Multiple instances

trait NoCase )

def tag[U] (s:String): String with U =
s.asInstance0f [String with U]




Multiple instances

trait NoCase )

def tag[U] (s:String): String with U =
s.asInstance0f [String with U]

scala> tag[NoCase] ("a")
res4: String with NoCase = a




Multiple instances

implicit object NoCaseStringComparator
extends Comparator[String with NoCase] {
def compare(a:String with NoCase,
b:String with NoCase) =
if (a.toLowerCase < b.tolLowerCase) LT
else if (a.toLowerCase > b.toLowerCase) GT
else EQ




Multiple instances

implicit object NoCaseStringComparator
extends Comparator[String with NoCase] {
def compare(a:String with NoCase,
b:String with NoCase) =
if (a.toLowerCase < b.tolLowerCase) LT
else if (a.toLowerCase > b.toLowerCase) GT
else EQ

scala> sort(List("b","Z","A","x") map tag[NoCasel])
resb: List[String with NoCase] = List(A, b, x, Z)




collapse

def collapse(coll: C[T]): T |




collapse

def collapse(coll: C[T]): T |

» T — Monoid
» C — Foldable



trait Monoid[T] {
def mplus(a:T,b:T):T
def mzero: T




API

trait Monoid[T] {
def mplus(a:T,b:T):T
def mzero: T

|HJ

Laws

mplus (a,mplus(b,c)) = mplus(mplus(a,b),c)
mplus (mzero,x) = x

mplus (x,mzero) = x




implicit object StringMonoid
extends Monoid[String] {
def mplus(a: String, b: String) = a + b
def mzero = ""




implicit object StringMonoid
extends Monoid[String] {
def mplus(a: String, b: String) = a + b
def mzero = ""

}

implicit object IntMonoid
extends Monoid[Int] {
def mplus(a: Int, b: Int) = a * b
def mzero =1




Foldable

import language.higherKinds )

trait Foldable[F[_ 1] {
def foldMap[A,B:Monoid] (foldable: F[A])
(f: A =>B): B




Foldable

implicit object FoldableList
extends Foldable[List] {

def foldMap[A,B] (fa: List[A]l) (g: A => B)
(implicit m: Monoid[B]): B =
fa.foldLeft (m.mzero) (
(b,a) => m.mplus(b,g(a)) )




Foldable

implicit object FoldableTree
extends Foldable[Tree] {
def foldMap[A,B] (fa: Tree[A])(g: A => B)
(implicit m: Monoid[B]): B =
fa match {
case Leaf => m.mzero
case Node(left, elem, right) =>
m.mplus (m.mplus(foldMap(left) (g),
g(elem)),

foldMap (right) (g))




collapse

def collapse[A:Monoid,F[A]:Foldable] (f: F[A]): A =
implicitly[Foldable[F]].foldMap(f) (identity) J




collapse

scala> collapse(List("Hello"," ","World"))
resO: String = Hello World




collapse

scala> collapse(List("Hello"," ","World"))
resO: String = Hello World

scala> collapse(List(1,2,3,4))
resl: Int = 24




collapse

scala> collapse(List("Hello"," ","World"))
resO: String = Hello World

scala> collapse(List(1,2,3,4))
resl: Int = 24

val tree: Treel[Int] =
Node (Node(Leaf,2,Leaf) ,4,Leaf)

scala> collapse(tree)
res2: Int = 8




Tuple2

implicit def MonoidTuple2[S,T] (implicit
ms: Monoid[S], mt: Monoid[T]) =
new Monoid[(S,T)] {
def mzero = (ms.mzero,mt.mzero)
def mplus(a: (S,T), b: (8,T)) =
(ms.mplus(a._1, b._1),
mt.mplus(a._2, b._2))




Tuple2

scala> collapse(List(("Hello ",2),("World",4)))
res3: (String, Int) = (Hello World,8) J




Tuple2

scala> collapse(List(("Hello ",2),("World",4)))
res3: (String, Int) = (Hello World,8)

val tree2: Tree[(String,Int)] = Node(
Node (Leaf, ("Hello ",2),Leaf),
("World",4) ,Leaf)

scala> collapse(tree2)
res4: (String, Int) = ("Hello World ",8)




