The Expression Problem

Grzegorz Balcerek

24-10-2015

Software entities

(classes, modules, functions, etc.)
should be open for extension,

but closed for modification.

Robert Martin, The Open-Close Principle

trait Shape {
def area: Double

}

class Rect(a: Double, b: Double)
extends Shape {
override def area = axb

}

object Test extends App {
val s1: Shape = new Rect(2,4)
println(sl.area)

¥

sealed trait Shape
case class Circle(r: Double) extends Shape
case class Rect(a: Double,

b: Double) extends Shape

object Area {
def area(s: Shape) = s match {
case Circle(r) => Math.PI*r*r
case Rect(a,b) => ax*b

}

object Test extends App {

new Circle(1)
new Rect(2,4)

val sl: Shape
val s2: Shape

import Area._

println(area(sl))
println(area(s2))

The Expression Problem
is a new name for an old problem.

The goal is to define a datatype by cases,
where one can add new cases to the datatype
and new functions over the datatype,
without recompiling existing code,
and while retaining static type safety

(e.g., no casts).

Philip Wadler, 12 November 1998

Module

Module2
Circle
area

Module3

scale

Module4
Rect
circum

trait Module A{
type shape
}

trait Module2 extends Module {

trait Shape {
def area: Double

¥
type shape <: Shape

class Circle(val r: Double)
extends Shape {
def area = Math.PI*r*r

}

object Module2Test extends App with Module2 {
println("Module2Test")

type shape = Shape

new Circle(1)
new Circle(3)

val sl: shape
val s2: shape

println(sl.area)
println(s2.area)

trait Module3 extends Module2 {
trait Shape extends super.Shape {
def scale(n: Double): shape

}
type shape <: Shape

class Circle(r: Double)
extends super.Circle(r) with Shape {
def scale(n: Double) = Circle(n*r)

}
def Circle(r: Double): shape

def scale(s: shape, n: Double) = s.scale(n)

trait Module3Final extends Module3 {
type shape = Shape

def Circle(r: Double): shape =
new Circle(r)

object Module3Test extends App
with Module3Final {

println("Module3Test")

Circle(3)
sl.scale(4)
scale(s1,4)

val s1: shape
val s2: shape
val s3: shape

println(sl.area)
println(s2.area)
println(s3.area)

trait Module4 extends Module3 {

trait Shape extends super.Shape {
def circum: Double

¥
type shape <: Shape

class Circle(r: Double)
extends super.Circle(r) with Shape {
def circum = Math.PI*2*r

}

class Rect(val a: Double, val b: Double)
extends Shape {

def area = a*b

def scale(n: Double): shape =

Rect (n*a,n*b)

def circum = 2+*(at+b)
+
def Rect(a: Double, b: Double): shape

trait Moduled4Final extends Module4 {
type shape = Shape

def Circle(r: Double): shape =
new Circle(r)

def Rect(a: Double, b: Double): shape =
new Rect(a,b)

object Module4Test
extends App with Module4Final {
println("Module4Test")

val sli:
val s2:
val s3:
val s4:
val sb:

shape = Circle(1)
shape = Rect(2,4)
shape = sl.scale(2)
shape = s2.scale(2)
shape = scale(s2,2)

println((sl.area, sil.circum))
println((s2.area, s2.circum))
println((s3.area, s3.circum))
println((s4.area, s4.circum))
println((s5.area, s5.circum))

Module

Module2
Circle
area

Module3

scale

Module4
Rect
circum

Module

Module1
Rect

Module2
Circle
area

Module3

circum

Module

Module5
Circle
circum

trait Module A{
type shape
}

trait RectModule extends Module {
trait Rect {
def a: Double
def b: Double
}
def Rect(a: Double, b: Double): shape
}

trait Modulel extends RectModule

trait AreaModule {
trait Area { def area: Double }

}

trait CircleModule extends Module {
trait Circle { def r: Double }
def Circle(r: Double): shape

}

trait CircleAreaModule extends AreaModule
with CircleModule {
trait CircleArea extends Circle with Area {
def area = Math.PIx*r*r

trait RectAreaModule extends AreaModule
with RectModule {
trait RectArea extends Rect with Area {
def area = axb

trait Module2 extends Modulel
with CircleAreaModule
with RectAreaModule {

trait Shape extends Area

trait Circle extends Shape
with CircleArea

trait Rect extends Shape
with super.Rect
with RectArea

trait CircumModule {
trait Circum {
def circum: Double

trait RectCircumModule extends CircumModule
with RectModule {
trait RectCircum extends Circum
with Rect {
def circum = 2*(a+b)

}

trait Module3 extends Modulel
with RectCircumModule {

trait Shape extends Circum

trait Rect extends Shape with RectCircum

trait CircleCircumModule extends CircumModule
with CircleModule {
trait CircleCircum extends Circum
with Circle {
def circum = Math.PI*2*r

trait Module4d extends Module2 with Module3
with CircleCircumModule {

trait Shape
extends super[Module2] .Shape
with super[Module3].Shape

trait Rect extends Shape
with super [Module2] .Rect
with super[Module3] .Rect

trait Circle extends Shape
with super.Circle with CircleCircum

trait Module4Final extends Module4 {
type shape = Shape

class Circle(val r: Double)
extends super.Circle

def Circle(r: Double): shape =
new Circle(r)

class Rect(val a: Double, val b: Double)
extends super.Rect

def Rect(a: Double, b: Double): shape =
new Rect(a,b)

object Test4 extends App with Module4Final {

println("Test4")

Circle(1)
Rect(2,4)

val s1: shape

val s2: shape

println(sl.area)
println(s2.area)
println(sl.circum)
println(s2.circum)

Module

Module1
Rect

Module2
Circle
area

Module3

circum

Module

Module5
Circle
circum

trait Moduleb extends Module
with CircleCircumModule {

trait Shape extends Circum

trait Circle extends Shape
with CircleCircum

trait ModulebSFinal extends Moduleb5 {
type shape = Shape

class Circle(val r: Double)
extends super.Circle

def Circle(r: Double): shape =
new Circle(r)

object Test5 extends App with ModulebFinal {
println("Test5")
val s1: shape = Circle(1)

println(sl.circum)

Module

Module1
Rect

Module2
Circle
area

Module3

circum

Module

Module5
Circle
circum

trait Areal[S] {
def area(s: S): Double
}

object Area {

def area[S](s: S) (implicit as: Areal[S]) =
as.area(s)

case class Rect(a: Double, b: Double)
object Rect {

implicit object RectArea
extends Area[Rect] {
def area(r: Rect) = r.a * r.b

}

object Testl extends App {
import Area._
val s1 = Rect(2,4)

println(area(sl))

trait Scale[S] {
def scale(s: S, n: Double): S
}

object Scale {
def scale[S:Scalel(s: S, n: Double) =
implicitly[Scale[S]].scale(s,n)

implicit object RectScale
extends Scale[Rect] {
def scale(r: Rect, n: Double) =
Rect(r.a*n, r.b*n)

case class Circle(r: Double)
object Circle {

implicit object CircleArea
extends Area[Circle] {

def area(c: Circle) = Math.PI*c.r*c.r

object Test2 extends App {

import Area._, Scale._
val s1 = Rect(2,4)

val s2 = scale(sl1,2)
val s3 = Circle(1)

println(area(sl))
println(area(s2))
println(area(s3))

object Test3 extends App {
import Scale. _
val s1 = Circle(1)

println(scale(s1,2)) // compilation error

